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The epsin family of endocytic adaptors 
has been found to be upregulated in 

cancer; however the relevance of these 
findings to this pathological condition is 
unclear. We have recently demonstrated 
that epsins are required for cell migra-
tion. In fact, epsin overexpression pro-
motes cancer cell invasion. Further, and 
in agreement with our previous findings, 
we also observed that overexpression of 
epsins led to epithelial cell migration 
beyond colony boundaries. Additionally, 
our results show that epsin-3 is the most 
potent paralog enhancing cell migra-
tion and invasion. Interestingly, epsin-3 
expression is not widespread but highly 
restricted to migratory keratinocytes 
and aggressive carcinomas. Upon fur-
ther investigation, we also identified 
epsin-3 as being expressed in pancreatic 
cancer cells. These findings suggest that 
upregulation of the EPN3 gene is specifi-
cally associated with invasive, aggressive 
cancers. We predict that investigation 
of these links between the endocytic 
machinery and mechanisms involved in 
tumor dissemination will contribute to 
the development of novel anti-metastatic 
and anti-cancer strategies.

The Epsin Family of Endocytic 
Adaptors Promote Cancer Cell 

Invasion

It is widely accepted that functional abnor-
malities in the endocytic machinery can 
lead to the onset of malignant transfor-
mation. In its most straightforward inter-
pretation, lack of function of endocytic 
proteins would lead to deficient endocy-
tosis and therefore to prolonged signaling 
from activated receptors. Interestingly, 
downregulation of the expression levels of 
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endocytic proteins such as Dab2, Numb 
and POB1 have been observed in several 
cancers including ovarian, prostate and 
breast cancer.1-5 Another mechanism by 
which abnormal endocytic protein func-
tion can lead to carcinogenesis is through 
the generation of aberrant fusion pro-
teins.6 For example, chromosomal trans-
locations involving the CALM (Clathrin 
Assembly Lymphoid Myeloid leukemia) 
and AF10 (ALL1 Fused 10) genes pro-
duce a fusion protein implicated in acute 
leukemia.7

Nevertheless, there are several exam-
ples of endocytic proteins upregulated 
in cancer. For example, elevated levels 
of epsins have been reported to be aug-
mented in skin, breast and lung can-
cer.8-10 Additionally, intersectin has been 
shown to induce fibroblast transformation 
in vitro.11 Interestingly, both endocytic 
proteins have been directly implicated 
in the activation of Rho GTPase signal-
ing pathways. Specifically, whereas the 
intersectin-L isoform has intrinsic Cdc42 
GEF activity, epsins bind and inhibit the 
function of GAPs for Cdc42 and Rac1.12 
Although it is not completely clear if ampli-
fied RhoGTPase signaling is sufficient to 
induce malignant transformation, it is 
predicted to enhance the dissemination 
of cancer. Indeed, we have demonstrated 
that the epsin family of endocytic adap-
tors is required for cell migration13 and 
that this function depends on the inter-
action of these proteins with the Cdc42/
Rac1 GAP and Ral effector RalBP1.13 
Further, our studies indicate that epsin-
RalBP1 complex formation is required for 
proper Rac1 signaling.13

RalBP1 has been observed to be highly 
upregulated in several invasive cancers 
including bladder, lung, prostate and 
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Additional epsin-dependent mechanisms 
for the enhancement of cancer cell inva-
sion. Although our data indicate that the 
ability of epsin to affect cell invasion is 
mediated by its interaction with RalBP1 
and the resulting RhoGTPase activation,13 
we cannot discard additional contribu-
tions by other mechanisms. Indeed, endo-
cytosis itself has been proposed to play 
an important role during cell migration. 
Thus, defects in the function of endocytic 
proteins such as Dab2, ARH, Numb, AP2 
and clathrin, have also been linked to 
abnormal cell migration due to defective 
integrin endocytosis.20-23

Additionally, epsin has been directly 
and specifically connected to the activation 
of the Notch signaling pathway24,25 which 
is known to be involved in cell migration/
invasion.26 In Drosophila, epsin is the only 
endocytic adaptor necessary for activation 
of Notch signaling in signal sending cells, 
likely due to its special ability to inter-
nalize ubiquitinated Notch-ligands.24,25 
Further, this Notch-signaling activation 

lammelipodia and enhanced cell migra-
tion which can be attributed to enhanced 
activation of both Arf6 and Rac1.19 Our 
previous findings show that the epsin fam-
ily of adaptors is also signaling to promote 
Arf6 and Rac1 activation, suggesting that 
these independent results are obtained by 
the activation of similar GTPase signaling 
pathways.13

We consistently observed that epsin-3 
was the most potent paralog for induc-
ing enhancement of cell invasion13 and 
MDCK migration (Fig. 1). Interestingly, 
epsin-3 has a limited expression pattern, 
essentially restricted to migratory cells 
and basal carcinomas.9 In fact, epsin-3 
expression is highly upregulated in breast 
cancer cell lines.9,10 Further, we have also 
identified epsin-3 as being expressed in 
mouse pancreatic cancer models13 and in 
invasive human pancreatic cell lines such 
as BxPC-3 (Fig. 1C). These findings sug-
gest that upregulation of the EPN3 gene 
is specifically associated with invasive can-
cer. Our laboratory is currently engaged in 
further investigations required to prove or 
disprove this hypothesis.

skin cancer14,15 and implicated in cancer 
cell migration, spreading and survival.16,17 
It should be noted that epsins, particu-
larly epsin-3, are upregulated in breast 
and skin cancer.9,10 Importantly, either 
epsin or RalBP1 overexpression lead to 
enhanced cell invasion through the base-
ment membrane.13 This observation sug-
gests that enhanced expression of these 
endocytic proteins contribute to cancer 
aggressiveness by promoting cell inva-
sion. In agreement with this prediction, 
we have observed morphological changes 
in MDCK epithelial cells upon overex-
pression of epsin-2 and epsin-3 which 
indicate enhanced cell migration (Fig. 1). 
Specifically, epsin-transfected cells repeat-
edly extend lamellipodia beyond the 
colony boundaries in a way which closely 
resembles epithelial leader cell migra-
tion18 but they also can be found migrat-
ing out of epithelial colonies entirely (Fig. 
1B). Interestingly, a strikingly similar 
transition in MDCK behavior has been 
observed previously upon overexpression 
of the Arf6 GEF ARNO.19 ARNO over-
expression causes the extension of broad 

Figure 1. Epsin overexpression induces migratory behavior in epithelial cells. MDCK cells were transiently transfected with GFP-Epsin1, 2 and 3. After 
transfection, cells were trypsinized and seeded on glass coverslips for 24 hr at low density to promote the formation of colonies containing approxi-
mately 50 cells. The coverslips were then fixed, co-stained with rhodamine-phalloidin and DAPI, and imaged by epifluorescence microscopy. (A) Frac-
tion of cells at the colony periphery acquiring migratory behavior was quantified in three independent experiments. Results for epsin-transfectants 
and untransfected (-) cells are indicated as the Mean ± SEM. (B) Example of epithelial cells transfected with GFP-epsin-3 displaying migratory behavior. 
Scale bar: 20 microns. (C) RNA prepared from HeLa (1), Panc-1 (2) and BxPC-3 (3) cell lines was used as template for RT-PCR with human epsin-3 specific 
primers. Arrow points to epsin-3 cDNA specific fragment.
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function has been shown to be conserved 
in worms and mice.27,28 Nevertheless, 
this juxtacrine cell-to-cell mechanism 
is unlikely to be involved in the epsin-
mediated enhancement of fibrosarcoma 
cell migration and invasion.13 The epsin-
3’s prevalent effects over other paralogs’ 
cannot be explained by this mechanism. 
Specifically, since Notch-ligand internal-
ization is a ubiquitin-dependent process,29 
all epsin paralogs (which bear functional 
ubiquitin-interacting motifs) are pre-
dicted to be equally effective in promoting 
cell invasion enhancement. However, it 
is possible that an epsin-induced, Notch-
dependent mechanism operates in the 
context of multi-cellular environments, 
such as pancreatic acini.

Nevertheless, the contributions of 
epsin-mediated enhancement of cancer 
cell invasion due to endocytosis in gen-
eral, and of Notch-ligands in particular, 
still needs to be assessed.

Cell sensitivity to anti-cancer drugs. 
Metastatic cells are usually associated with 
enhanced resistance to chemotherapy.30 
Therefore, factors or pathways that con-
tribute to migratory behavior are of high 
interest for therapeutic purposes. Given 
our recent findings, epsins rightfully join 
the list of potential targets for anti-met-
astatic and anti-cancer strategies, which 
already includes their interaction partner 
RalBP1. In fact, it is tempting to specu-
late that in addition to other proposed 
mechanisms,17 RalBP1’s ability to pro-
mote cancer cell survival is related to its 
capability of inducing migratory behavior. 
Therefore, function impairment of endo-
cytic proteins crucial to cell invasion (such 
as epsins and RalBP1) represents an excit-
ing new direction for developing effective 
cancer therapeutics.
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